Stochastic Bound Majorization
نویسندگان
چکیده
Recently a majorization method for optimizing partition functions of log-linear models was proposed alongside a novel quadratic variational upper-bound. In the batch setting, it outperformed state-of-the-art firstand second-order optimization methods on various learning tasks. We propose a stochastic version of this bound majorization method as well as a low-rank modification for highdimensional data-sets. The resulting stochastic second-order method outperforms stochastic gradient descent (across variations and various tunings) both in terms of the number of iterations and computation time till convergence while finding a better quality parameter setting. The proposed method bridges firstand secondorder stochastic optimization methods by maintaining a computational complexity that is linear in the data dimension and while exploiting second order information about the pseudo-global curvature of the objective function (as opposed to the local curvature in the Hessian).
منابع مشابه
Majorization for partially ordered sets
We generalize the classical notion of majorization in Rn to a majorization order for functions defined on a partially ordered set P . In this generalization we use inequalities for partial sums associated with ideals in P . Basic properties are established, including connections to classical majorization. Moreover, we investigate transfers (given by doubly stochastic matrices), complexity issue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.5605 شماره
صفحات -
تاریخ انتشار 2013